Buchempfehlung
Windows System Programming
Windows System Programming
Das Kompendium liefert viele interessante Informationen zur Windows-Programmierung auf Englisch. [Mehr Infos...]
FreeBASIC-Chat
Es sind Benutzer im FreeBASIC-Chat online.
(Stand:  )
FreeBASIC bei Twitter
Twitter FreeBASIC-Nachrichten jetzt auch über Twitter erhalten. Follow us!

fb:porticula NoPaste

Info
Info / Hilfe
Liste
Übersicht / Liste
Neu
Datei hochladen
Suche
Quellcode suchen
Download
Dateidownload

quad_3.bi

Uploader:RedakteurVolta
Datum/Zeit:21.10.2010 10:58:35

Function quad_string(ByRef value As quad) As String
  ' convert a quadruple-precision quantity to a decimal character string.
  ' error indicator ier = 0 if conversion ok
  '                     = 1 if the length of the string < 36 characters.
  Dim As ZString * 2  sign
  Dim As ZString * 18 str1, str2
  Dim As String strng
  Dim As quad vl, v
  Dim As Integer dec_expnt, i, ier
  Dim As Double tmp

  ier = 0

  ' check if value = zero.
  If (value.hi = zero) Then
    strng = " 0.00"
    Return strng
  End If

  If (value.hi < 0) Then
    sign = "-"
    vl.hi = - value.hi
    vl.lo = - value.lo
  Else
    sign = " "
    vl = value
  End If

  ' use log10 to set the exponent.
  dec_expnt = FBfloor( Log(vl.hi)*0.4342944819032518 )
  ' get the first 15 decimal digits
  If (dec_expnt <> 14) Then
    v=longlog(cquad(10.0, zero))
    v=mult_quad_dp(v,(14 - dec_expnt))
    v=longexp(v)
    vl = longmul(vl , v )
  End If

  str1=Format( vl.hi,"################")
  ' calculate the remainder
  tmp =Val(str1+".0#")
  vl = quad_sub_dp(vl , tmp)
  ' if vl is -ve, subtract 1 from the last digit of str1, and add 1 to vl.
  If (vl.hi < -0.5d-16) Then
    tmp = tmp - one
    str1=Format( tmp,"################")
    vl = quad_add_dp(vl , one)
  End If

  vl = mult_quad_dp(vl , 1.d15)

  ' write the second 15 digits

  str2=Format( vl.hi,"################")
  '    end if
  If Len(str2)<15 Then
    str2=String(15-Len(str2),"0")+str2
  End If

  ' if str2 consists of asterisks, add 1 in the last digit to str1.
  ' set str2 to zeroes.
  If (Len(str2)>15) Then
    tmp = tmp + one
    str1=Format( tmp,"#################")
    If (Left(str1,1) <> " ") Then
      'dec_expnt = dec_expnt + 1
    Else
      str1 = Mid(str1,2)
    End If
    str2 = "000000000000000"
  End If

  strng = sign+Left(str1,1)+"."+Mid(str1,2)+str2
  If dec_expnt>=0 Then
    strng=strng+"e+"+Str(dec_expnt)
  Else
    strng=strng+"e"+Str(dec_expnt)
  End If

  ' replace leading blanks with zeroes
  'do i = 1, 15
  '   if (str2(i:i) /= ' ') exit
  '   str2(i:i) = '0'
  'end do
  '
  '' combine str1 & str2, removing decimal points & adding exponent.
  'i = index(str1, '.')
  'str1(i:i) = ' '
  'str2(16:16) = ' '
  'strng = '.' // trim(adjustl(str1)) // trim(adjustl(str2)) // 'e'
  'write(str1, '(i4.2)') dec_expnt+1
  'strng = trim(strng) // adjustl(str1)
  '
  '' restore the sign.
  'if (sign = '-') then
  '   strng = '-' // adjustl(strng)
  'else
  '   strng = adjustl(strng)
  'end if

  Return strng
End Function


'##############################################################################


Function string_quad(Byref value As String) As quad
  Dim As quad qd, pt
  Dim As Integer j, s, d, e, ep, ex, es, i, f, fp, fln
  Dim As String c, f1, f2, f3, f4, vl
  j=1
  s=1
  d=0
  e=0
  ep=0
  ex=0
  es=1
  i=0
  f=0
  fp=0
  f1=""
  f2=""
  f3=""
  vl=Ucase(value)
  fln=Len(vl)

  While j<=fln
    c=Mid(vl,j,1)
    If ep=1 Then
      If c=" " Then
        Goto atof1nxtch
      Endif
      If c="-" Then
        es=-es
        c=""
      Endif
      If c="+" Then
        Goto atof1nxtch
      Endif
      If (c="0") And (f3="") Then
        Goto atof1nxtch
      Endif
      If (c>"/") And (c<":") Then 'c is digit between 0 and 9
        f3=f3+c
        ex=10*ex+(Asc(c)-48)
        Goto atof1nxtch
      Endif
    Endif

    If c=" " Then
      Goto atof1nxtch
    Endif
    If c="-" Then
      s=-s
      Goto atof1nxtch
    Endif
    If c="+" Then
      Goto atof1nxtch
    Endif
    If c="." Then
      If d=1 Then
        Goto atof1nxtch
      Endif
      d=1
    Endif
    If (c>"/") And (c<":") Then 'c is digit between 0 and 9
      If ((c="0") And (i=0)) Then
        If d=0 Then
          Goto atof1nxtch
        Endif
        If (d=1) And (f=0) Then
          e=e-1
          Goto atof1nxtch
        Endif
      Endif
      If d=0 Then
        f1=f1+c
        i=i+1
      Else
        If (c>"0") Then
          fp=1
        Endif
        f2=f2+c
        f=f+1
      Endif
    Endif
    If c="E" Then
      ep=1
    Endif
    atof1nxtch:
    j=j+1
  Wend
  If fp=0 Then
    f=0
    f2=""
  Endif

  ex=es*ex-1+i+e
  f1=f1+f2
  If Len(f1)>33 Then
    f1=Mid(f1,1,33)
  Endif
  While Len(f1)<33
    f1=f1+"0"
  Wend
  c=Mid(f1,1,30)
  f2=Left(c,15)
  f3=Right(c,15)
  f4=right(f1,3)

  qd.hi=Val(f2)
  qd.lo=0
  qd=mult_quad_dp(qd, 1000000000000000)
  qd=quad_add_dp(qd, Val(f3))
  qd=mult_quad_dp(qd, 1000)
  qd=quad_add_dp(qd, Val(f4))
  pt = cquad(10.0, 0.0)
  pt = quad_pow_int(pt, 32)
  qd=longdiv(qd,pt)
  pt = cquad(10.0, 0.0)
  pt = quad_pow_int(pt, ex)
  qd=longmul(qd,pt)
  if s=-1 then
      qd.hi=-qd.hi
      qd.lo=-qd.lo
  end if
  Return qd
End Function


'##############################################################################


Sub longmodr(ByRef a As quad, ByRef b As quad, ByRef n As Integer, ByRef rm As quad)

  ' Extended arithmetic calculation of the 'rounded' modulus:
  '  a = n.b + rm
  ' where all quantities are in quadruple-precision, except the Integer
  ' number of multiples, n.   The absolute value of the remainder (rm)
  ' is not greater than b/2.
  ' The result is exact.   remainder may occupy the same location as either input.

  ' Programmer: Alan Miller

  ' Latest revision - 11 September 1986
  ' Fortran version - 4 December 1996
  Dim As quad temp

  ' Check that b.hi .ne. 0

  If (b.hi = zero) Then
    Print " *** Error in longmodr - 3rd argument zero ***"
    Return
  End If

  ' Calculate n.
  temp = longdiv(a , b)
  n = nint(CSng(temp.hi))

  ' Calculate remainder preserving full accuracy.
  temp = exactmul2(CDbl(n), b.hi)
  rm.hi = a.hi
  rm.lo = zero
  temp = longsub(rm , temp)
  rm.hi = a.lo
  rm.lo = zero
  temp = longadd(rm , temp)
  rm = exactmul2(CDbl(n), b.lo)
  rm = longsub(temp , rm)

End Sub 'longmodr



Sub longcst(ByRef a As quad, ByRef b As quad, ByRef sine As Integer,_
ByRef cosine As Integer, ByRef tangent As Integer)
Dim As Integer pos1
Dim As quad d, term, temp, angle, sum1, sum2, sin1
Dim As Integer npi, ipt, i
Dim As Double tol15 = 1.E-15, tol30 = 1.E-30

' Sin(i.pi/40), i = 0(1)20
Static As quad table(0 To 20)
table( 0) = cquad(0.0000000000000000E+00,  0.0000000000000000E+00)
table( 1) = cquad(0.7845909572784494E-01,  0.1464397249532491E-17)
table( 2) = cquad(0.1564344650402309E+00,  -.2770509565052586E-16)
table( 3) = cquad(0.2334453638559054E+00,  0.2058612230858154E-16)
table( 4) = cquad(0.3090169943749475E+00,  -.8267172724967036E-16)
table( 5) = cquad(0.3826834323650898E+00,  -.1005077269646159E-16)
table( 6) = cquad(0.4539904997395468E+00,  -.1292033036231312E-16)
table( 7) = cquad(0.5224985647159488E+00,  0.6606794454708078E-16)
table( 8) = cquad(0.5877852522924732E+00,  -.1189570533007057E-15)
table( 9) = cquad(0.6494480483301838E+00,  -.1134903961116171E-15)
table(10) = cquad(0.7071067811865476E+00,  -.4833646656726458E-16)
table(11) = cquad(0.7604059656000310E+00,  -.1036987135483477E-15)
table(12) = cquad(0.8090169943749476E+00,  -.1381828784809282E-15)
table(13) = cquad(0.8526401643540922E+00,  0.4331886637554353E-16)
table(14) = cquad(0.8910065241883680E+00,  -.1474714419679880E-15)
table(15) = cquad(0.9238795325112868E+00,  -.9337725537817898E-16)
table(16) = cquad(0.9510565162951536E+00,  -.7008780156242836E-16)
table(17) = cquad(0.9723699203976766E+00,  0.4478912629332321E-16)
table(18) = cquad(0.9876883405951378E+00,  -.4416018005989794E-16)
table(19) = cquad(0.9969173337331280E+00,  0.1235153006196267E-16)
table(20) = cquad(0.1000000000000000E+01,  0.0000000000000000E+00)

' Reduce angle to range (-pi/2, +pi/2) by subtracting an Integer multiple of pi.

longmodr(a, pi, npi, angle)

' Find nearest multiple of pi/40 to angle.

longmodr(angle, piby40, ipt, d)

' Sum 1 = 1 - d**2/2' + d**4/4' - d**6/6' + ...
' Sum 2 = d - d**3/3' + d**5/5' - d**7/7' + ...

sum1.hi = zero
sum1.lo = zero
sum2.hi = zero
sum2.lo = zero
pos1 = 0
term = d
i = 2
L20: If (Abs(term.hi) > tol15) Then
term = longmul(term , d)                                ' Use quad. precision
If (i = 2 Or i = 4 Or i = 8) Then
  term.hi = term.hi / i
  term.lo = term.lo / i
Else
  term = div_quad_int(term , i)
End If
If (pos1) Then
  sum1 = longadd(sum1 , term)
Else
  sum1 = longsub(sum1 , term)
End If
Else
term.hi = term.hi * d.hi / CDbl(i)             ' Double prec. adequate
If (pos1) Then
  sum1.lo = sum1.lo + term.hi
Else
  sum1.lo = sum1.lo - term.hi
End If
End If

' Repeat for sum2
i = i + 1
If (Abs(term.hi) > tol15) Then
  term = longmul(term, div_quad_int( d, i))                      ' Use quad. precision
  If (pos1) Then
    sum2 = longadd(sum2 , term)
  Else
    sum2 = longsub(sum2 , term)
  End If
Else
  term.hi = term.hi * d.hi / CDbl(i)             ' Double prec. adequate
  If (pos1) Then
    sum2.lo = sum2.lo + term.hi
  Else
    sum2.lo = sum2.lo - term.hi
  End If
End If

i = i + 1
pos1 = Not pos1
If (Abs(term.hi) > tol30) Then GoTo L20

sum1 = quad_add_dp(sum1 , one)                              ' Now add the 1st terms
sum2 = longadd(sum2 , d)                                  ' for max. accuracy

' Construct sine, cosine or tangent.
' Sine first.    Sin(angle + d) = Sin(angle).Cos(d) + Cos(angle).Sin(d)
If (sine Or tangent) Then
  If (ipt >= 0) Then
    temp = table(ipt)
  Else
    temp = negate_quad(table( -ipt))
  End If
  b = longmul(sum1 , temp)
  If (ipt >= 0) Then
    temp = table( 20-ipt)
  Else
    temp = table( 20+ipt)
  End If
  b = longadd(b , longmul(sum2 , temp))
  If (npi <> 2*(npi\2)) Then
    b = negate_quad(b)
  End If
  If (tangent) Then
    sin1 = b
  End If
End If

' Cosine or tangent.

If (cosine Or tangent) Then
  If (ipt >= 0) Then
    temp = table( ipt)
  Else
    temp = negate_quad(table( -ipt))
  End If
  b = longmul(sum2 , temp)
  If (ipt >= 0) Then
    temp = table( 20-ipt)
  Else
    temp = table( 20+ipt)
  End If
  b = longsub(longmul(sum1 , temp) , b)
  If (npi <> 2*(npi\2)) Then
    b = negate_quad(b)
  End If
End If

' Tangent.

If (tangent) Then

  ' Check that bhi .ne. 0
  If (b.hi = 0.d0) Then
    Print " *** Infinite tangent - routine longcst ***"
    b.hi = 1.0D+308
    b.lo = 0.d0
    Return
  End If
  b = longdiv(sin1 , b)
End If

End Sub 'longcst

' Extended accuracy arithmetic sine, cosine & tangent (about 31 decimals).
' Calculates  b = sin, cos or tan (a), where all quantities are in
' quadruple-precision, using table look-up and a Taylor series expansion.
' The result may occupy the same locations as the input value.
' Much of the code is common to all three Functions, and this is in a
' Sub longcst.


Function longSin(ByRef a As quad) As quad 'Result(b)

  Dim As quad b
  Dim As Integer sine, cosine, tangent

  ' Set logical variables for sine Function.
  sine = -1
  cosine = 0
  tangent = 0
  longcst(a, b, sine, cosine, tangent)

  Return b
End Function 'longsin



Function longCos(ByRef a As quad) As quad 'Result(b)

  Dim As quad b
  Dim As Integer sine, cosine, tangent

  ' Set logical variables for sine Function.
  sine = 0
  cosine = -1
  tangent = 0
  longcst(a, b, sine, cosine, tangent)

  Return b
End Function 'longcos



Function longTan(ByRef a As quad) As quad 'Result(b)

  Dim As quad b
  Dim As Integer sine, cosine, tangent

  ' Set logical variables for sine Function.
  sine = 0
  cosine = 0
  tangent = -1
  longcst(a, b, sine, cosine, tangent)

  Return b
End Function 'longtan



Function longAsin(ByRef a As quad) As quad 'Result(b)

  ' Quadratic-precision arc sine (about 31 decimals).
  ' One Newton-Raphson iteration to solve:  f(b) = Sin(b) - a = 0,
  ' except when a close to -1 or +1.
  ' The result (b) may occupy the same location as the input values (a).
  ' Use ACOS when |a| is close to 1.
  Dim As quad y, b, c

  ' Check that -1 <= a.hi <= +1.
  If (a.hi < -one Or a.hi > one) Then
    Print " *** Argument outside range for longasin ***"
    Return b
  End If

  If (Abs(a.hi) < 0.866) Then
    ' First approximation is  y = Asin(a).
    ' Quadruple-precision result is  y - [Sin(y) - a]/Cos(y).

    y.hi = Asin(a.hi)
    y.lo = zero
    'b = y + (a - Sin(y)) / Cos(y.hi)
    b = longadd(y,div_quad_dp(longsub(a,longSin(y)),Cos(y.hi)))
  Else
    ' Calculate Acos(c) where c = Sqr(1 - a^2)
    c = longSqr(dp_sub_quad(one , longmul(a,a)))
    y.hi = ACos(c.hi)
    y.lo = zero
    'b = y + (Cos(y) - c) / Sin(y.hi)
    b = longadd(y,div_quad_dp(longsub(longCos(y),c),Sin(y.hi)))
    If (a.hi < zero) Then b = negate_quad(b)
  End If
  Return b
End Function 'longasin



Function longAcos(ByRef a As quad) As quad 'Result(b)
  ' Quadratic-precision arc cosine (about 31 decimals).
  ' Newton-Raphson iteration to solve: f(b) = Cos(b) - a = 0.
  ' The result (b) may occupy the same location as the input values (a).
  ' When |a| is near 1, use formula from p.175 of
  ' `Software Manual for the Elementary Functions' by W.J. Cody, Jr. &
  ' W. Waite, Prentice-Hall, 1980.
  Dim As quad y, b, c

  ' Check that -1 <= a.hi <= +1.
  If (a.hi < -one Or a.hi > one) Then
    Print "*** Argument outside range for longacos ***"
    Return b
  End If

  If (Abs(a.hi) < 0.866) Then
    ' First approximation is  y = Acos(a).
    ' Quadruple-precision result is  y + [Cos(y) - a]/Sin(y).

    y.hi = ACos(a.hi)
    y.lo = zero
    'b = y + (Cos(y) - a) / Sin(y.hi)
    b = longadd(y, div_quad_dp(longsub(longCos(y),a),Sin(y.hi)))
  Else
    ' Calculate 2.Asin(c) where c = Sqr([1 - |a|]/2)
    'c = Sqr((one - Abs(a))/2)
    c = longsqr(div_quad_int(dp_sub_quad(one, qabs(a)),2))
    y.hi = Asin(c.hi)
    y.lo = zero
    'b = (y - (Sin(y) - c) / Cos(y.hi))*2
    b = mult_quad_int(longsub(y,div_quad_dp(longsub(longSin(y),c),Cos(y.hi))),2)
    If (a.hi < zero) Then b = longsub(pi , b)
  End If

  Return b
End Function 'longacos



Function longAtn(ByRef a As quad) As quad 'Result(b)

  ' Quadratic-precision arc tangent (about 31 decimals).
  ' Newton-Raphson iteration to solve: f(b) = Tan(b) - a = 0.
  ' The result (b) may occupy the same location as the input values (a).
  Dim As quad b, y
  Dim As Double t

  ' First approximation is  y = Atn(a).
  ' Quadruple-precision result is  y - [Tan(y) - a] * Cos(y)**2.
  y.hi = Atn(a.hi)
  y.lo = zero
  'b = y - (Tan(y) - a) * (Cos(y.hi))**2
  t = Cos(y.hi)
  t = t*t
  b = longsub(y,mult_quad_dp(longsub(longTan(y),a),t))
  Return b
End Function 'longatan



Function qAtan2(ByRef y As quad, ByRef x As quad) As quad 'Result(b)

  ' Quadratic-precision arc tangent (about 31 decimals).
  ' As for arc tangent (y/x) except that the result is in the range
  '       -pi < ATAN2 <= pi.
  ' The signs of x and y determine the quadrant.
  Dim As quad b, z
  Dim As Double t

  ' First approximation is  z = Atan2(y, x).
  ' Quadruple-precision result is  z - [Tan(z) - (y/x)] * Cos(z)**2.
  z.hi = Atan2(y.hi, x.hi)
  z.lo = zero
  If (x.hi = zero) Then
    b = z
  Else
    t = Cos(z.hi)
    t = t*t
    'b = z - (Tan(z) - y/x) * (Cos(z.hi))**2
    b = longsub(z, mult_quad_dp(longsub(longTan(z),longdiv(y, x)),t))
  End If

  Return b
End Function 'qatan2



Function quad_sum(a() As quad) As quad 'Result(s)

  ' Quadruple-precision SUM
  Dim As Integer i
  Dim As quad s

  's = cquad(zero, zero)
  For i=LBound(a) To UBound(a)
    s = longadd(s , a(i))
  Next

  Return s
End Function 'quad_sum



Function quad_dot_product(a() As quad, b() As quad) As quad 'Result(ab)

  ' Quadruple-precision DOT_PRODUCT
  Dim As Integer i, n
  Dim As quad ab

  'ab = cquad(zero, zero)
  n = UBound(a)
  If (n <> UBound(b)) Or (LBound(a)<>LBound(b)) Then
    Print "** Error invoking DOT_PRODUCT - dIfferent argument sizes **"
    Print " Size of 1st argument = "; n,   _
    "   Size of 2nd argument = "; UBound(b)
    Return ab
  End If

  For i = LBound(a) To n
    ab = longadd(ab, longmul( a(i),b(i)))
  Next

  Return ab
End Function 'quad_dot_product


Function quad_int(ByRef a As quad) As Integer
  Dim As Integer i
  i=Int(a.hi)
  Return i
End Function

Function Sqr_(ByVal x As Double) As Double
  Return Sqr(x)
End Function
#Undef Sqr
Function Sqr OverLoad(ByRef x As Double) As Double
  Return Sqr_(x)
End Function

Function Sqr (ByRef x As quad) As quad
  Return longSqr(x)
End Function

Function Exp_(ByVal x As Double) As Double
  Return Exp(x)
End Function
#Undef Exp
Function Exp OverLoad(ByRef x As Double) As Double
  Return Exp_(x)
End Function

Function Exp (ByRef x As quad) As quad
  Return longExp(x)
End Function

Function Log_(ByVal x As Double) As Double
  Return Log(x)
End Function
#Undef Log
Function Log OverLoad(ByRef x As Double) As Double
  Return Log_(x)
End Function

Function Log (ByRef x As quad) As quad
  Return longLog(x)
End Function

Function Sin_(ByVal x As Double) As Double
  Return Sin(x)
End Function
#Undef Sin
Function Sin OverLoad(ByRef x As Double) As Double
  Return Sin_(x)
End Function

Function Sin (ByRef x As quad) As quad
  Return longSin(x)
End Function

Function Cos_(ByVal x As Double) As Double
  Return Cos(x)
End Function
#Undef Cos
Function Cos OverLoad(ByRef x As Double) As Double
  Return Cos_(x)
End Function

Function Cos (ByRef x As quad) As quad
  Return longCos(x)
End Function

Function Tan_(ByVal x As Double) As Double
  Return Tan(x)
End Function
#Undef Tan
Function Tan OverLoad(ByRef x As Double) As Double
  Return Tan_(x)
End Function

Function Tan (ByRef x As quad) As quad
  Return longTan(x)
End Function

Function Asin_(ByVal x As Double) As Double
  Return Asin(x)
End Function
#Undef Asin
Function Asin OverLoad(ByRef x As Double) As Double
  Return Asin_(x)
End Function

Function Asin (ByRef x As quad) As quad
  Return longAsin(x)
End Function

Function Acos_(ByVal x As Double) As Double
  Return ACos(x)
End Function
#Undef ACos
Function ACos OverLoad(ByRef x As Double) As Double
  Return Acos_(x)
End Function

Function ACos (ByRef x As quad) As quad
  Return longAcos(x)
End Function

Function Atn_(ByVal x As Double) As Double
  Return Atn(x)
End Function
#Undef Atn
Function Atn OverLoad(ByRef x As Double) As Double
  Return Atn_(x)
End Function

Function Atn (ByRef x As quad) As quad
  Return longAtn(x)
End Function

Function Atan2_(ByVal x As Double, ByVal y As Double) As Double
  Return Atan2(x,y)
End Function
#Undef Atan2
Function Atan2 OverLoad(ByRef x As Double, ByVal y As Double) As Double
  Return Atan2_(x,y)
End Function

Function Atan2 (ByRef x As quad, ByRef y As quad) As quad
  Return qAtan2(x,y)
End Function

Function Abs_(ByVal x As Double) As Double
  Return Abs(x)
End Function
#Undef Abs
Function Abs OverLoad(ByRef x As Double) As Double
  Return Abs_(x)
End Function

Function Abs (ByRef x As quad) As quad
  Return qabs(x)
End Function

'Function Val_(Byval x As String) As Double
'    Return Val(x)
'End Function
'#undef Val
'Function Val Overload(Byref x As String) As Double
'    Return Val_(x)
'End Function
'
'Function Val Overload(Byref x As String) As quad
'    Return string_quad(x)
'End Function


'Declare Function cquad Overload ( Byref lhs As quad ) As quad
Declare Function cquad ( ByRef lhs As Integer ) As quad
Declare Function cquad ( ByRef lhs As Long ) As quad
Declare Function cquad ( ByRef lhs As LongInt ) As quad
Declare Function cquad ( ByRef lhs As UInteger ) As quad
Declare Function cquad ( ByRef lhs As ULong ) As quad
Declare Function cquad ( ByRef lhs As ULongInt ) As quad
Declare Function cquad ( ByRef lhs As Single )  As quad
Declare Function cquad ( ByRef lhs As Double )  As quad
Declare Function cquad ( ByRef lhs As String )  As quad

Function cquad ( ByRef lhs As quad ) As quad
  Return lhs
End Function

Function cquad ( ByRef lhs As Integer ) As quad
  Dim As quad retval
  retval.hi = CDbl(lhs)
  retval.lo = zero
  Return retval
End Function

Function cquad ( ByRef lhs As Long ) As quad
  Dim As quad retval
  retval.hi = CDbl(lhs)
  retval.lo = zero
  Return retval
End Function

Function cquad ( ByRef lhs As LongInt ) As quad
  Dim As quad retval
  retval.hi = CDbl(lhs)
  retval.lo = zero
  Return retval
End Function

Function cquad ( ByRef lhs As UInteger ) As quad
  Dim As quad retval
  retval.hi = CDbl(lhs)
  retval.lo = zero
  Return retval
End Function

Function cquad ( ByRef lhs As ULong ) As quad
  Dim As quad retval
  retval.hi = CDbl(lhs)
  retval.lo = zero
  Return retval
End Function

Function cquad ( ByRef lhs As ULongInt ) As quad
  Dim As quad retval
  retval.hi = CDbl(lhs)
  retval.lo = zero
  Return retval
End Function

Function cquad ( ByRef lhs As Single ) As quad
  Dim As quad retval
  retval = string_quad ( str(lhs) )
  Return retval
End Function

Function cquad ( ByRef lhs As Double ) As quad
  Dim As quad retval
  retval = string_quad ( str(lhs) )
  Return retval
End Function

Function cquad ( ByRef lhs As String ) As quad
  Dim As quad retval
  retval = string_quad ( lhs )
  Return retval
End Function

'+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Operator + ( ByRef lhs As quad, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = longadd ( lhs, rhs )
  Return retval
End Operator

Operator + ( ByRef lhs As quad, ByRef rhs As Integer ) As quad
  Dim As quad retval
  retval = quad_add_int(  lhs, rhs )
  Return retval
End Operator

Operator + ( ByRef lhs As Integer, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = int_add_quad ( lhs, rhs )
  Return retval
End Operator

Operator + ( ByRef lhs As quad, ByRef rhs As Long ) As quad
  Dim As quad retval
  retval = quad_add_int( lhs, rhs )
  Return retval
End Operator

Operator + ( ByRef lhs As Long, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = int_add_quad(lhs , rhs )
  Return retval
End Operator

Operator + ( ByRef lhs As quad, ByRef rhs As LongInt ) As quad
  Dim As quad retval
  retval = quad_add_dp(lhs, CDbl(rhs) )
  Return retval
End Operator

Operator + ( ByRef lhs As LongInt, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = dp_add_quad(CDbl(lhs), rhs )
  Return retval
End Operator

Operator + ( ByRef lhs As quad, ByRef rhs As UInteger ) As quad
  Dim As quad retval
  retval = quad_add_int( lhs, rhs )
  Return retval
End Operator

Operator + ( ByRef lhs As UInteger, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = int_add_quad( lhs, rhs )
  Return retval
End Operator

Operator + ( ByRef lhs As quad, ByRef rhs As ULong ) As quad
  Dim As quad retval
  retval = quad_add_int( lhs, rhs )
  Return retval
End Operator

Operator + ( ByRef lhs As ULong, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = int_add_quad( lhs, rhs )
  Return retval
End Operator

Operator + ( ByRef lhs As quad, ByRef rhs As Single ) As quad
  Dim As quad retval
  retval = quad_add_Real(lhs, rhs )
  Return retval
End Operator

Operator + ( ByRef lhs As Single, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = Real_add_quad( lhs, rhs )
  Return retval
End Operator

Operator + ( ByRef lhs As quad, ByRef rhs As Double ) As quad
  Dim As quad retval
  retval = quad_add_dp(lhs, rhs )
  Return retval
End Operator

Operator + ( ByRef lhs As Double, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = dp_add_quad( lhs, rhs )
  Return retval
End Operator

Operator quad.+= ( ByRef rhs As quad )
  Dim As quad retval
  this = longadd(this, rhs )
End Operator

Operator quad.+= ( ByRef rhs As Double )
  Dim As quad retval
  this = quad_add_dp(this, rhs )
End Operator

Operator quad.+= ( ByRef rhs As Integer )
  Dim As quad retval
  this = quad_add_int(this, rhs )
End Operator

Operator quad.+= ( ByRef rhs As String )
  Dim As quad retval
  retval = string_quad( rhs )
  this = longadd(this, retval )
End Operator
'-------------------------------------------------------------

Operator - ( ByRef lhs As quad, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = longsub(lhs, rhs )
  Return retval
End Operator

Operator - ( ByRef lhs As quad, ByRef rhs As Integer ) As quad
  Dim As quad retval
  retval = quad_sub_int(lhs, rhs )
  Return retval
End Operator

Operator - ( ByRef lhs As Integer, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = int_sub_quad(lhs, rhs )
  Return retval
End Operator

Operator - ( ByRef lhs As quad, ByRef rhs As Long ) As quad
  Dim As quad retval
  retval = quad_sub_int(lhs, rhs )
  Return retval
End Operator

Operator - ( ByRef lhs As Long, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = int_sub_quad(lhs, rhs )
  Return retval
End Operator

Operator - ( ByRef lhs As quad, ByRef rhs As LongInt ) As quad
  Dim As quad retval
  retval = quad_sub_dp(lhs, CDbl(rhs) )
  Return retval
End Operator

Operator - ( ByRef lhs As LongInt, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = dp_sub_quad(CDbl(lhs), rhs )
  Return retval
End Operator

Operator - ( ByRef lhs As quad, ByRef rhs As Single ) As quad
  Dim As quad retval
  retval = quad_sub_Real(lhs, rhs )
  Return retval
End Operator

Operator - ( ByRef lhs As Single, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = Real_sub_quad(lhs, rhs )
  Return retval
End Operator

Operator - ( ByRef lhs As quad, ByRef rhs As Double ) As quad
  Dim As quad retval
  retval = quad_sub_dp(lhs, rhs )
  Return retval
End Operator

Operator - ( ByRef lhs As Double, ByRef rhs As quad ) As quad
  Dim As quad retval
  retval = dp_sub_quad(lhs, rhs )
  Return retval
End Operator

Operator - ( ByRef lhs As quad ) As quad
  Dim As quad retval
  retval = negate_quad(lhs )
  Return retval
End Operator

Operator quad.-= ( ByRef rhs As quad )
  Dim As quad retval
  this = longsub(this, rhs )
End Operator

Operator quad.-= ( ByRef rhs As Double )
  Dim As quad retval
  this = quad_sub_dp(this, rhs )
End Operator

Operator quad.-= ( ByRef rhs As Integer )
  Dim As quad retval
  this = quad_sub_int(this, rhs )
End Operator

Operator quad.-= ( ByRef rhs As String )
  Dim As quad retval
  retval = string_quad( rhs )
  this = longsub(this, retval )
End Operator