Buchempfehlung
Windows-Programmierung. Das Entwicklerhandbuch zur WIN32-API
Windows-Programmierung. Das Entwicklerhandbuch zur WIN32-API
"Der" Petzold, das über 1000 Seiten starke Standardwerk zum Win32-API - besonders nützlich u. a. bei der GUI-Programmierung in FreeBASIC! [Mehr Infos...]
FreeBASIC-Chat
Es sind Benutzer im FreeBASIC-Chat online.
(Stand:  )
FreeBASIC bei Twitter
Twitter FreeBASIC-Nachrichten jetzt auch über Twitter erhalten. Follow us!

fb:porticula NoPaste

Info
Info / Hilfe
Liste
Übersicht / Liste
Neu
Datei hochladen
Suche
Quellcode suchen
Download
Dateidownload

quad_1x.bi

Uploader:RedakteurVolta
Datum/Zeit:21.10.2010 10:59:31

'MODULE quadruple_precision
'
' This version is for Compaq Fortran, Lahey/Fujitsu LF95 and
' Absoft ProFortran 6.0.
' N.B. The -o0 option (no optimization) must be used with LF95.
'
' N.B. This is quadruple precision implemented in SOFTWARE, hence it is SLOW.
' This package has NOT been tested with other Fortran 90 compilers.
' The operations +-*/ & sqrt will probably work correctly with other compilers
' for PCs.   Functions and routines which initialize quadruple-precision
' constants, particularly the trigonometric and exponential functions will
' only work if the compiler initializes double-precision constants from
' decimal code in exactly the same way as the Lahey compilers.

' The basic algorithms come from:
' Linnainmma, S.  Software for doubled-precision floating-point computations,
'    ACM Trans, Math. Software, vol. 7, pp.272-283, 1981.

' Programmer : Alan Miller
' e-mail: amiller @ bigpond.net.au   URL:  http://users.bigpond.net.au/amiller

' Latest revision - 18 September 2002

'http://www.cmis.csiro.au/Alan_Miller/quad.html (quad.f90)


#Include "string.bi"

Namespace quad_precision

'dp = 8 = double
Dim Shared As Integer nbits = 53
Dim Shared As Double constant = 134217729.0 '=2^(nbits - nbits\2) + 1
Dim Shared As Double zero = 0.0
Dim Shared As Double one  = 1.0

Type quad
  As Double hi, lo

  Declare Constructor ( ByRef rhs As quad )
  Declare Constructor ( ByRef rhs As Integer = 0 )
  Declare Constructor ( ByRef rhs As Long = 0 )
  Declare Constructor ( ByRef rhs As LongInt = 0 )
  Declare Constructor ( ByRef rhs As UInteger = 0 )
  Declare Constructor ( ByRef rhs As ULong = 0 )
  Declare Constructor ( ByRef rhs As ULongInt = 0 )
  Declare Constructor ( ByRef rhs As Single )
  Declare Constructor ( ByRef rhs As Double )
  Declare Constructor ( ByRef rhs As String ="0" )

  Declare Operator Let( ByRef rhs As quad )
  Declare Operator Let( ByRef rhs As Integer )
  Declare Operator Let( ByRef rhs As Long )
  Declare Operator Let( ByRef rhs As LongInt )
  Declare Operator Let( ByRef rhs As UInteger )
  Declare Operator Let( ByRef rhs As ULong )
  Declare Operator Let( ByRef rhs As ULongInt )
  Declare Operator Let( ByRef rhs As Single )
  Declare Operator Let( ByRef rhs As Double )
  Declare Operator Let( ByRef rhs As String )

  '' implicit step versions
  Declare Operator For ( )
  Declare Operator Step( )
  Declare Operator Next( ByRef end_cond As quad ) As Integer

  '' explicit step versions
  Declare Operator For ( ByRef step_var As quad )
  Declare Operator Step( ByRef step_var As quad )
  Declare Operator Next( ByRef end_cond As quad, ByRef step_var As quad ) As Integer
  Declare Operator += ( ByRef rhs As quad )
  Declare Operator += ( ByRef rhs As Double )
  Declare Operator += ( ByRef rhs As Integer )
  Declare Operator += ( ByRef rhs As String )
  Declare Operator -= ( ByRef rhs As quad )
  Declare Operator -= ( ByRef rhs As Double )
  Declare Operator -= ( ByRef rhs As Integer )
  Declare Operator -= ( ByRef rhs As String )
  Declare Operator *= ( ByRef rhs As quad )
  Declare Operator *= ( ByRef rhs As Double )
  Declare Operator *= ( ByRef rhs As Integer )
  Declare Operator *= ( ByRef rhs As String )
  Declare Operator /= ( ByRef rhs As quad )
  Declare Operator /= ( ByRef rhs As Double )
  Declare Operator /= ( ByRef rhs As Integer )
  Declare Operator /= ( ByRef rhs As String )
  Declare Operator ^= ( ByRef rhs As quad )
  Declare Operator ^= ( ByRef rhs As Double )
  Declare Operator ^= ( ByRef rhs As Integer )
  Declare Operator ^= ( ByRef rhs As String )
  Declare Operator Cast( ) As Integer
  Declare Operator Cast( ) As Long
  Declare Operator Cast( ) As LongInt
  Declare Operator Cast( ) As UInteger
  Declare Operator Cast( ) As ULong
  Declare Operator Cast( ) As ULongInt
  Declare Operator Cast( ) As Single
  Declare Operator Cast( ) As Double
  Declare Operator Cast( ) As String
End Type

Type quad_rm
  As Integer n
  As quad rm
End Type

Declare Function longadd(ByRef a As quad, ByRef c As quad) As quad
Declare Function string_quad(ByRef value As String) As quad
Declare Function quad_string(ByRef value As quad) As String

Function cquad OverLoad(ByRef a As Double, ByRef b As Double) As quad
  Dim As quad c
  c.hi=a
  c.lo=b
  Return c
End Function

Dim Shared As quad _
pi = cquad ( 0.3141592653589793D+01, 0.1224646799147353D-15 ), _
piby2 = cquad ( 0.1570796326794897D+01, -.3828568698926950D-15 ), _
piby3 = cquad ( 0.1047197551196598D+01, -.3292527815701405D-15 ), _
piby4 = cquad ( 0.7853981633974484D+00, -.8040613248383182D-16 ), _
piby6 = cquad ( 0.5235987755982990D+00, -.1646263907850702D-15 ), _
twopi = cquad ( 0.6283185307179586D+01, 0.2449293598294707D-15 ), _
ln_pi = cquad ( 0.1144729885849400D+01, 0.2323105560877391D-15 ), _
sqrtpi = cquad ( 0.1772453850905516D+01, -.7666586499825800D-16 ), _
fact_pt5 = cquad ( 0.8862269254527582D+00, -.1493552349616447D-15 ), _
sqrt2pi = cquad ( 0.2506628274631001D+01, -.6273750096546544D-15 ), _
lnsqrt2pi = cquad ( 0.9189385332046728D+00, -.3878294158067242D-16 ), _
one_on2pi = cquad ( 0.1591549430918953D+00, 0.4567181289366658D-16 ), _
two_on_rtpi = cquad ( 0.1128379167095513D+01, -.4287537502368968D-15 ), _
deg2rad = cquad ( 0.1745329251994330D-01, -.3174581724866598D-17 ), _
rad2deg = cquad ( 0.5729577951308232D+02, -.1987849567057628D-14 ), _
ln2 = cquad ( 0.6931471805599454D+00, -.8783183432405266D-16 ), _
ln10 = cquad ( 0.2302585092994046D+01, -.2170756223382249D-15 ), _
log2e = cquad ( 0.1442695040888964D+01, -.6457785410341630D-15 ), _
log10e = cquad ( 0.4342944819032519D+00, -.5552037773430574D-16 ), _
log2_10 = cquad ( 0.3321928094887362D+01, 0.1661617516973592D-15 ), _
log10_2 = cquad ( 0.3010299956639812D+00, -.2803728127785171D-17 ), _
euler = cquad ( 0.5772156649015330D+00, -.1159652176149463D-15 ), _
e = cquad ( 0.2718281828459045D+01, 0.1445646891729250D-15 ), _
sqrt2 = cquad ( 0.1414213562373095D+01, 0.1253716717905022D-15 ), _
sqrt3 = cquad ( 0.1732050807568877D+01, 0.3223954471431004D-15 ), _
sqrt10 = cquad ( 0.3162277660168380D+01, -.6348773795572286D-15 ), _
piby40 = cquad ( 0.7853981633974484E-01, -.1081617080994607E-16 )

Function exactmul2(ByRef a As Double, ByRef c As Double) As quad 'Result(ac)
  '  Procedure exactmul2, translated from Pascal, from:
  '  Linnainmaa, Seppo (1981).   Software for doubled-precision floating-point
  '  computations.   ACM Trans. on Math. Software (TOMS), 7, 272-283.
  Dim As quad ac
  Dim As Double a1, a2, c1, c2, t
  Dim As UShort ocw, ncw = &h27f

  Asm
    fstcw Word [ocw]
    fldcw Word [ncw]

    't = constant * a
    mov  eax, Dword Ptr [a]
    fld  qword Ptr [eax]
    fmul qword Ptr [constant]
    fstp qword Ptr [t]

    'a1 = (a - t) + t             ' Lahey's optimization removes the brackets
    '                             ' and sets a1 = a which defeats the whole point.
    'mov eax, dword ptr [a]
    fld  qword Ptr [eax]
    fsub qword Ptr [t]
    fadd qword Ptr [t]
    fstp qword Ptr [a1]

    'a2 = a - a1
    'mov eax, dword ptr [a]
    fld  qword Ptr [eax]
    fsub qword Ptr [a1]
    fstp qword Ptr [a2]

    't = constant * c
    mov  eax, Dword Ptr [c]
    fld  qword Ptr [eax]
    fmul qword Ptr [constant]
    fstp qword Ptr [t]

    'c1 = (c - t) + t
    'mov eax, dword ptr [c]
    fld  qword Ptr [eax]
    fsub qword Ptr [t]
    fadd qword Ptr [t]
    fstp qword Ptr [c1]

    'c2 = c - c1
    'mov  eax, dword ptr [c]
    fld  qword Ptr [eax]
    fsub qword Ptr [c1]
    fstp qword Ptr [c2]

    'ac.hi = a * c
    'mov eax, dword ptr [c]
    fld  qword Ptr [eax]
    mov  eax, Dword Ptr [a]
    fmul qword Ptr [eax]
    fstp qword Ptr [ac]

    'ac.lo = (((a1 * c1 - ac.hi) + a1 * c2) + c1 * a2) + c2 * a2
    fld  qword Ptr [c1]
    fmul qword Ptr [a1]
    fsub qword Ptr [ac]
    fld  qword Ptr [c2]
    fmul qword Ptr [a1]
    fxch st(1)
    faddp
    fld  qword Ptr [a2]
    fmul qword Ptr [c1]
    fxch st(1)
    faddp
    fld  qword Ptr [a2]
    fmul qword Ptr [c2]
    fxch st(1)
    faddp
    fstp qword Ptr [ac+8]

    fldcw Word [ocw]
  End Asm
  Return ac
End Function 'exactmul2

Function longmul(ByRef a As quad, ByRef c As quad) As quad
  '  procedure longmul, translated from pascal, from:
  '  linnainmaa, seppo (1981).   software for doubled-precision floating-point
  '  computations.   acm trans. on math. software (toms), 7, 272-283.
  Dim As quad ac, z
  Dim As Double zz
  z = exactmul2(a.hi, c.hi)
  Dim As UShort ocw, ncw = &h27f
 Asm   fstcw Word [ocw]
 Asm   fldcw Word [ncw]

  zz = ((a.hi + a.lo) * c.lo + a.lo * c.hi) + z.lo
  ac.hi = z.hi + zz
  ac.lo = (z.hi - ac.hi) + zz
  ac.hi = z.hi + zz
  ac.lo = (z.hi - ac.hi) + zz
  Asm    fldcw Word [ocw]

  Return ac
End Function


Function mult_quad_int(ByRef a As quad, ByRef i As Integer) As quad
  '     multiply quadruple-precision number (a) by an integer (i).

  Dim As quad c '= cquad(zero, zero)
  Dim As Double di = i

  If (i = 1) Then
    c = a
  ElseIf (i = -1) Then
    c.hi = -a.hi
    c.lo = -a.lo
  Else
    c = longadd(exactmul2(a.hi, di) , exactmul2(a.lo, di))
  End If

  Return c
End Function


Function mult_int_quad(ByRef i As Integer, ByRef a As quad) As quad'Result(c)
  '     Multiply quadruple-precision number (a) by an Integer (i).

  Dim As quad c

  If (i = 0) Then
    c = cquad(zero, zero)
  ElseIf (i = 1) Then
    c = a
  ElseIf (i = -1) Then
    c.hi = -a.hi
    c.lo = -a.lo
  Else
    c = longadd(exactmul2(a.hi, CDbl(i)) , exactmul2(a.lo, CDbl(i)))
  End If

  Return c
End Function 'mult_int_quad



Function mult_quad_dp(ByRef a As quad, ByRef b As Double) As quad
  '  multiply a quadruple-precision number (a) by a double-precision number (b).
  Dim As quad c, z
  Dim As Double zz
  z = exactmul2(a.hi, b)
  zz = a.lo * b + z.lo
  c.hi = z.hi + zz
  c.lo = (z.hi - c.hi) + zz
  Return c
End Function



Function mult_quad_Real(ByRef a As quad, ByRef b As Single) As quad 'Result(c)
  '  Multiply a quadruple-precision number (a) by a Real number (b).
  Dim As quad z, c
  Dim As Double zz

  z = exactmul2(a.hi, CDbl(b))
  zz = a.lo * b + z.lo
  c.hi = z.hi + zz
  c.lo = (z.hi - c.hi) + zz
  Return c
End Function 'mult_quad_Real



Function mult_dp_quad(ByRef b As Double, ByRef a As quad) As quad 'Result(c)
  '  Multiply a quadruple-precision number (a) by a double-precision number (b).
  Dim As quad z, c
  Dim As Double zz

  z = exactmul2(a.hi, b)
  zz = a.lo * b + z.lo
  c.hi = z.hi + zz
  c.lo = (z.hi - c.hi) + zz
  Return c
End Function 'mult_dp_quad



Function mult_Real_quad(ByRef a As Single, ByRef b As quad) As quad 'Result(c)
  '  Multiply a quadruple-precision number (a) by a double-precision number (b).
  Dim As quad z, c
  Dim As Double zz
  z = exactmul2(b.hi, CDbl(a))
  zz = b.lo * a + z.lo
  c.hi = z.hi + zz
  c.lo = (z.hi - c.hi) + zz
  Return c
End Function 'mult_Real_quad



Function longdiv(ByRef a As quad, ByRef c As quad) As quad 'Result(ac)
  '  Procedure longdiv, translated from Pascal, from:
  '  Linnainmaa, Seppo (1981).   Software for doubled-precision floating-point
  '  computations.   ACM Trans. on Math. Software (TOMS), 7, 272-283.
  Dim As Double z, zz
  Dim As quad q, ac
  z = a.hi / c.hi
  q = exactmul2(c.hi, z)
  zz = ((((a.hi - q.hi) - q.lo) + a.lo) - z*c.lo) / (c.hi + c.lo)
  ac.hi = z + zz
  ac.lo = (z - ac.hi) + zz
  Return ac
End Function 'longdiv



Function div_quad_dp(ByRef a As quad, ByRef b As Double) As quad 'Result(c)
  '     Divide a quadruple-precision number (a) by a double-precision number (b)
  Dim As Double z, zz
  Dim As quad q, c
  z = a.hi / b
  q = exactmul2(b, z)
  zz = (((a.hi - q.hi) - q.lo) + a.lo) / b
  c.hi = z + zz
  c.lo = (z - c.hi) + zz
  Return c
End Function 'div_quad_dp


Function div_quad_Real(ByRef a As quad, ByRef b As Single) As quad'Result(c)
  '     Divide a quadruple-precision number (a) by a Real number (b)
  Dim As Double z, zz
  Dim As quad q, c
  z = a.hi / b
  q = exactmul2(CDbl(b), z)
  zz = (((a.hi - q.hi) - q.lo) + a.lo) / b
  c.hi = z + zz
  c.lo = (z - c.hi) + zz
  Return c
End Function 'div_quad_Real


Function div_quad_int(ByRef a As quad, ByRef b As Integer) As quad 'Result(c)
  '     Divide a quadruple-precision number (a) by an Integer (b)
  Dim As Double z, zz
  Dim As quad q, c
  z = a.hi / b
  q = exactmul2(CDbl(b), z)
  zz = (((a.hi - q.hi) - q.lo) + a.lo) / b
  c.hi = z + zz
  c.lo = (z - c.hi) + zz
  Return c
End Function 'div_quad_int



Function div_int_quad(ByRef a As Integer, ByRef c As quad) As quad 'Result(ac)
  '  Procedure longdiv, translated from Pascal, from:
  '  Linnainmaa, Seppo (1981).   Software for doubled-precision floating-point
  '  computations.   ACM Trans. on Math. Software (TOMS), 7, 272-283.
  Dim As Double z, zz
  Dim As quad q, ac
  z = CDbl(a) / c.hi
  q = exactmul2(c.hi, z)
  zz = (((a - q.hi) - q.lo) - z*c.lo) / (c.hi + c.lo)
  ac.hi = z + zz
  ac.lo = (z - ac.hi) + zz
  Return ac
End Function 'div_int_quad



Function div_Real_quad(ByRef a As Single, ByRef c As quad) As quad 'Result(ac)
  '  Procedure longdiv, translated from Pascal, from:
  '  Linnainmaa, Seppo (1981).   Software for doubled-precision floating-point
  '  computations.   ACM Trans. on Math. Software (TOMS), 7, 272-283.
  Dim As Double z, zz
  Dim As quad q, ac
  z = CDbl(a) / c.hi
  q = exactmul2(c.hi, z)
  zz = (((a - q.hi) - q.lo) - z*c.lo) / (c.hi + c.lo)
  ac.hi = z + zz
  ac.lo = (z - ac.hi) + zz
  Return ac
End Function 'div_Real_quad



Function div_dp_quad(ByRef a As Double, ByRef c As quad) As quad 'Result(ac)
  '  Procedure longdiv, translated from Pascal, from:
  '  Linnainmaa, Seppo (1981).   Software for doubled-precision floating-point
  '  computations.   ACM Trans. on Math. Software (TOMS), 7, 272-283.
  Dim As Double z, zz
  Dim As quad q, ac
  z = a / c.hi
  q = exactmul2(c.hi, z)
  zz = (((a - q.hi) - q.lo) - z*c.lo) / (c.hi + c.lo)
  ac.hi = z + zz
  ac.lo = (z - ac.hi) + zz
  Return ac
End Function 'div_dp_quad



Function longadd(ByRef a As quad, ByRef c As quad) As quad
  '  procedure longadd, translated from pascal, from:
  '  linnainmaa, seppo (1981).   software for doubled-precision floating-point
  '  computations.   acm trans. on math. software (toms), 7, 272-283.

  Dim As quad ac
  Dim As Double z, q, zz

  z = a.hi + c.hi
  q = a.hi - z
  zz = (((q + c.hi) + (a.hi - (q + z))) + a.lo) + c.lo
  ac.hi = z + zz
  ac.lo = (z - ac.hi) + zz
  Return ac
End Function


Function quad_add_int(ByRef a As quad, ByRef c As Integer) As quad 'Result(ac)
  Dim As Double z, q, zz
  Dim As quad ac
  z = a.hi + c
  q = a.hi - z
  zz = (((q + c) + (a.hi - (q + z))) + a.lo)
  ac.hi = z + zz
  ac.lo = (z - ac.hi) + zz
  Return ac
End Function 'quad_add_int



Function quad_add_Real(ByRef a As quad, ByRef c As Single) As quad 'Result(ac)
  Dim As Double z, q, zz
  Dim As quad ac
  z = a.hi + c
  q = a.hi - z
  zz = (((q + c) + (a.hi - (q + z))) + a.lo)
  ac.hi = z + zz
  ac.lo = (z - ac.hi) + zz
  Return ac
End Function 'quad_add_Real

#Include "quad_2.bi"
#Include "quad_3.bi"
#Include "quad_4.bi"