Buchempfehlung
Windows-Programmierung. Das Entwicklerhandbuch zur WIN32-API
Windows-Programmierung. Das Entwicklerhandbuch zur WIN32-API
"Der" Petzold, das über 1000 Seiten starke Standardwerk zum Win32-API - besonders nützlich u. a. bei der GUI-Programmierung in FreeBASIC! [Mehr Infos...]
FreeBASIC-Chat
Es sind Benutzer im FreeBASIC-Chat online.
(Stand:  )
FreeBASIC bei Twitter
Twitter FreeBASIC-Nachrichten jetzt auch über Twitter erhalten. Follow us!

fb:porticula NoPaste

Info
Info / Hilfe
Liste
Übersicht / Liste
Neu
Datei hochladen
Suche
Quellcode suchen
Download
Dateidownload

t_cubert.bas

Uploader:RedakteurVolta
Datum/Zeit:30.09.2010 20:42:05

'PROGRAM test_cube_root
#Include "quad_1x.bi"
Using quad_precision
#define EPSILON_HALF 2.22044604925031308E-016

Declare Function cube_root(y As quad) As quad

Dim As quad x, lhs, rhs, diff
Dim As Double  r
Dim As Integer i
Screen 0
Width 90,25
Color 15,1
Cls

Randomize 4711

For i = 1 To 20
  x.hi=Rnd
  r=Rnd
  x.hi = (x.hi - 0.5) / r
  x.lo = x.hi * EPSILON_HALF
  lhs = cube_root(x)
  If (x.hi >= 0.0) Then
    rhs = Exp( Log(x) / 3.0)
  Else
    rhs = - Exp( Log(- x) / 3.0)
  End If
  diff = lhs - rhs
  Print "lhs ="; lhs, "  Diff. ="; diff
Next
Sleep

Function cube_root(y As quad) As quad 'RESULT(x)
  '     Calculates the cube root of y in quadruple-precision.
  ' Programmer : Alan Miller, CSIRO Mathematical Information Sciences
  ' Latest revision - 6 December 1996

  Dim As quad f, xsq, x
  Dim As Double one_third = 0.33333333333333330
  '     First approximation is the double-precision cube root.
  '     Only one iteration is necessary.

  x.hi = Abs(y.hi)^ one_third
  If Sgn(y.hi) < 0.0 Then x.hi= -x.hi
  ' Put f(x) = x**3 - y
  ' Then Newton's iterative method uses:
  ' new x = x - f(x) / f'(x)
  ' Halley's method uses:
  ' new x = x - f / (f' - 0.5 * f * f'' / f')
  ' In this case
  ' new x = x - x * f / (3.x^3 - f)

  x.lo = 0.0
  xsq  = exactmul2(x.hi, x.hi)
  f    = x * xsq - y
  x    = x - x * f / (3.0 * x * xsq - f)
  Return x
End Function' cube_root