AXSuite3

ActiveX/COM support library for FreeBASIC , Based on Jose Roca Code ActiveX/COM Programming.
AxSuite3 : is an extension of AxSuite2

Disclaimer:

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Feature:

- Automation/Native Dispatch Call (Axsuite)

- vTable Call for ActiveX/COM that has dual interface (much faster than Invoke call)
- Event Sink, for ActiveX/COM event generated programming

Requirement:
- ATL.dIl (or ATL71.dll) needed to host ActiveX Control and some utility functions
- FreeBASIC Compiler, IDE (FBEdit Custom Control included), tested on Win98/XP

AxPackaqge.zip:
- AxSuite3.pdf : this document

- AxSuite3.exe : Type Library Browser & code generator
- Ax_Lite.bi include file for AxSuite functions no static lib (all the functions are in the bi file)

- source code for all the files to buid yourself axsuite3.exe
- sample code for MSCAL.OCX calendar control using mC® syntaxes /vTable Call / invoke + events

Installation:

- Copy include .bi file to ..\FreeBASIC\Inc

- Copy AtICtI/AtI71Ctl.dll to ..\FBEdit if you use it
- Copy AxSuite3.exe to ..\FBEdit if you use it

- Copy Atl.dll or Atl71.dll to your Windows system

Nota: AxSuite3.exe can recreate all the needed files, if you have destroyed some

- In FBEdit: (optional)
Option->Dialog Editor->Custom Control->Add->load : Atl@ll and Atl71Ctl.dll
Option->Tools Menu->Insert->Menu ltem : AxSuite3 , command : AxSuite3.exe

get more samples

on AxSuite2 package in | http://www.freebasic.net/ old site/arch/upload/axsuite2pkg.zip
orin that backup link |https://db.tt/prxvaN |

Ax01: Calendar control with automation dispatch call and event (mscal.ocx)
Directx8 : tutorial on directx8 with matrix programming— taken from DirectX4VB
AxExcel : MS Excel COM programming with automation dispatch call and event.

Command List - In Functional Order

Sub AxInit(ByVal Host As Integer=False)
Initialize AxSupport library

Set Host to True for ActiveX control, set to False ion window control programming
Ex: AxInit(True)

Function AxCreate_Objectoverload(strProgID1 AS string, strliID1 AS string ="") as any ptr

Creating an COM Object by Program ID or Clsid (classId) + IID (interface Id)

StrProgID: Program ID or Clsid as string

strlID1: interface id as string

Ex: Objptr = AxCreateObject("Excel.Application")

or Objptr = AxCreateObject("{8E27C92B-1264-101C-8A2F-040224009C02}" , "{8E27C92C-1264-101C-8A2F-040224009C02}")

Function AxCreate_Object overload(hwnd_control as hwnd) as any ptr
Creating an COM Object by hwnd of control (atlwin class)
Ex: Objptr = AxCreateObject(hwin)

Sub AxRelease_Object(byVal Objptr as any ptr)
Release the created object

Function AxCreateControlLic (ByVal strProgID AS IpOLEStr, byval hWndControl AS hwnd, _
byval strLicKey AS Ipwstr) AS Long

Creating Licensed ActiveXControl by Program ID and License key.

Return AxScode

StrProgID: Program ID

HWnd: handle of control

StrLicKey: license key

Ex: MyScode as scode=AxCreateControlLic(MyProgIDdigtem(hwin,idc_stcl), MyLicKey)

function AxCreate_Unreg(ByVal hdll As HMODULE, byval CLSIDS As string, byval IIDS As string, _
ByVal hwndControl AS hwnd = 0) as any ptr

Creating an unregistered COM Object by library adress, Clsid (class|d) + 11D (interfaceld) , optionally with
hwhndControl
To use not registered COM components , interrestirgyoid register control

Sub setObj(byval pxface as uinteger ptr,ByVal pThis as uinteger)
Set native dispatch AxSupport style object address

Pxface: pointer to native dispatch AxSupport stylteiface

PThis: Object address (returned by AtIAxGetDispatchxdCreateObject)
Ex: SetObj @Mylnterface, punk

Sub setVODbj(byval pxface as uinteger ptr,ByVal vThisas variant)
Set AxSupport style interface object address
Pxface:pointer to AxSupport style interface vThis:
VariantDispatch (returned by object)
Ex: SetVObj @Mylnterface, vRet

Function ToBSTR(cnv_string As String) As BSTR
Convert string to BSTR, mostly used by ActiveX/COM
Ex: MyBSTR as BSTR=ToBSTR(“Test String”)

Note: Free allocated BSTR after used to prevent memory leak
with defined macroAx_FreeStr(bstr)

complementary function fromBSTRto string
Function FromBSTR(ByVal szW As BSTR) As String

Function VariantS(ByRef v As variant)As String
To get string value of Variant string (bstr)
Ex: MyString as string=Variants(vString)

Function VariantB(ByRef v As variant)As bstr
To get bstr value of variant string (bstr)
Ex: MyBSTR as bstr=Variantb(vString)

Function VariantV(ByRef v As variant)As Double
To get numeric val ue of variant numeric
Ex: Mylnteger as integer = Variantv(vNumeric)

Function Vptr(Byval x As Any Type*) As Variant Ptr

Assign any type* Variant ptr (use callocate to create the memory allocation)
Ex:

Dim vVar As Variant

vVar=*vptr(20) : vWar=*vptr(20.5) : vVar=*vptr(“Hellahere”)

Note:

used when passing value as variant ptr to AxSuppbrbsfunction

VLet (As variant, x As Any Type*) !Itis a macro using Vptr Functions
Assign any type* to variant
Ex: DimvVar As Variant : Vlet(vVar, 12.75) : Vlet(\&f, “Test String”)

Other useful macros

#define toVariant (x) x aany type
#define Ax_FreeStr(bs) to free bstr
#define Kill_Bstr(bs) to kill bstr

*anytype
(variant/string/byte/short/Integer/Longint/single/Double/BSTR/Ubyte/Uinteger/Ulongint/Ushort/Ubyte)

COM automation call functions

Sub Ax_Call (pThis As Ipdisptach,Byref Script As String,...)

Automation dispatch for object Call ObjCall in AxSuite2

Sub Ax_Put (pThis As Ipdisptach,Byref Script As String,...)

Automation dispatch for object Put ObjPut in AxSuite2

Sub Ax_Set (pThis As Ipdisptach,Byref Script As String,...)

Automation dispatch for object set Obj &t in AxSuite2

Function Ax_Get(pThis As Ipdisptach,Byref Script As String,...)As Variant Ptr
Automation dispatch for object Get function ObjGet in AxSuite2

pThis: object/dispatch address
Script: representation of (dot) calling method(s),irdicate number of passing parameter each method ,... :

variant ptr parameter(s) list, the sequence should follow script.
Ex: Ax_Call xlwbks,"ltem@1. OpenText@1",vptr(1),vptr(“c:\xlapp\test.txt”)
Ax_Putxlapp,"Visible@1",vptr(TRUE)
Ax_Set msdatgrid,”DataSource@1”,vptr(rsdisp)
sasstring=variants(*Ax_Get(wbk,"worksheets.ltem@fnga",vptr(1)))
Useful extended macros
Ax_GetStr(pThis As Ipdisptach,Byref Script As String,..)As string
Ax_GetVal(pThis As Ipdisptach,Byref Script As String,...)As double
Ax_GetBstr(pThis As Ipdisptach,Byref Script As String,...)As Bstr
Ax_GetODbj(pThis As Ipdisptach,Byref Script As String,...)As Ipdisptach

Dispatch functions

Sub AxCall (ByRef pmember as tmember,...)

Native dispatch for object Call and Property put/set method
pMember: Axsupport Interface style member
,... . variant ptr parameter(s) list
Ex:
Vlet (vVar , bgr(255,64,127))
AxCall MylInterface.putFontColor, @vVar

Function AxGet (ByRef pmember as tmember,...)as variant

Native dispatch for Function and property get method

pMember : Axsupport Interface style member

,... . variant ptr parameter(s) list , return valugasant

Ex:

VLet (vindex,1)

FontColorasinteger = variantv(AxGet(Mylinterface lBattColor, @vindex))

vTable method call

Obj->IpVtbl->Method(Obj,...) RetValue=Obj->IpVtbl-

>Method(Obj,...)

Sart from AxSuite2, vTable call and generated code will use C vTable call syntax.

EX:

Scode = dx->Ipvtbl->Direct3DCreate(dx,@d3d) ‘get OiBD Interface, returning scode
d3d->Ipvtbl->GetAdapterDisplayMode(d3d,D3DADAPTER_BEJLT,@DispMode)

simplified macro :
Ax_Vt(Obj,Method, ...) like Ax_Vt(pVTI,getcOptions ,@pVTI2)

Control Window Functions/subs

FUNCTION AxWinFull(byVal h_parent as hwnd, namel as string, progid as string, _
X as integer, y as integer, w as integer, h as integer, _
style as integer = WS_visible or WS_OVERLAPPEDWINDOW, exstyle as integer = 0) as hwnd

Create normal window to hold an activeX control

FUNCTION AxWinTool(byVal h_parent as hwnd, namel as string, progid as string, _
X as integer, y as integer, w as integer, h as integer, _
style as integer = WS_visible, exstyle as integer =SVEX_TOOLWINDOW) as hwnd

Create tool window to hold an activeX control

FUNCTION AxWinChild(byVal h_parent as hwnd, namel as string, progid as string, _
X as integer, y as integer, w as integer, h as integer, _
style as integer = WS_visible or WS_child or WS_bordeexstyle as integer =0) as hwnd

Create child window to hold an activeX control

h_parent : hwnd of parent window ; namel : name of the window ; progid : progID or registered control
X ;y;w; h for position x,y , w for width and h for height of the window

Sub AxWinKill(byVal h_Control as hwnd)
Destroy control window

Sub AxWinHide(byVal h_Control as hwnd, byVal h_Parent as hwnd = 0)
Hide control window and refresh parent window

Sub AxWinShow(byVal h_Control as hwnd, byVal h_Parent as hwnd = 0)
Show control window and refresh parent window

FUNCTION AxWinUnreg(byVal h_parentas hwnd, _

X as integer, y as integer, w as integer, h as integer, _

style as integer = WS_visible or WS_child or WS_border, exstyle as integer = 0) as hwnd
Create Window container for hosting non registered window control

h_parent : hwnd of parent window
X ;y;w; h for position x,y , w for width and h for height of the window

A. Using Automation Dispatch

Must have headers:
#include Once "windows.bi"
#Include Once "Ax_Lite.bi" 'no static lib

AxInit(True) ‘'ax global COM initialization True if Atl control , else False

' if needed use AxControlChild or AxControlTool t@ate the control on form
and use the progid to create the window

Dim Shared As any ptr Obj_Ptr ' object Ptr
Dim Shared As Dword Obj_Event 'cookie for objectres

Declare Sub Call_Sett()

' The events can be connected
Declare Function DCalendarEvents_Events_Connect(BA¥#ConnectionPointContainer Ptr,ByRef As dword) AS Dword
Declare Function DCalendarEvents_Events_Disconnect(ByVal As IConnectionPointContainer ptr, ByVal As dword) AS Long

Sub Call_Init(ByVal hWin As hWnd)' be called from initialization of the control form

Obj_Ptr = AxCreate_Object (hwin) 'get object control address
' The events are now connected
DCalendarEvents_Events_Connect(cast(any ptr ,OBjOBjr Event) ‘connect object with its event
Call_Sett() initial settings if you want some
End Sub
Sub Call_OnClose() "normaly be called from close form command
' The events are now disconnected
DCalendarEvents_Events_Disconnect(cast(any ptr FbjObj_Event) 'disconnect event from object
AxRelease_Object(Obj_Ptr) 'release object
'AxStop() ‘only one by project, better on the WM_close of last Form
End Sub
Sub Call_Sett() 'initial settings here

‘ex put/ get /call values

‘change Calendar Title font

Ax_Put cal,"TitleFont.Name@1",vptr("Arial")

Ax_Putcal,"TitleFont.Size@1",vptr(12)

Ax_Put cal,"TitleFont.bold@1",vptr(TRUE)

Ax_Put cal,"TitleFont.italic@1",vptr(true)
End Sub

B. Using Native vTable

Must have headers:
#include Once "windows.bi"
#Include Once "Ax_Lite.bi" 'no static lib

#Include Once "mscal_vTable.bi" 'vTable generated file

AxInit(True) 'ax global COM initialization True if Atl control , else False

"remind control form : Classname = AtIAXWin ProgIDMSCAL.Calendar
' if needed use AxControlChild or AxControlTool to create the control on form

1

Dim Shared As any ptr Obj_Ptr ' object Ptr
Dim Shared As Dword Obj_Event 'cookie for objectres

Dim Shared As ICalendar_ Ptr pVTI "vTable type ptr

Declare Sub Call_Sett()

' The events can be connected

Declare Function DCalendarEvents_Events_Connect(BX¥#ConnectionPointContainer Ptr,ByRef As dword) AS Dword
Declare Function DCalendarEvents_Events_Disconnect(ByVal As IConnectionPointContainer ptr, ByVal As dword) AS Long
Sub Call_Init(ByVal hWin As hWnd)' be called from initialization of the control form

Obj_Ptr = AxCreate_Object (hwin) 'get object control address
pVTI = Obj_Ptr ‘assign object to vTable type
"or pVTI=Create_l|Calendar() ' to assign object direcly to interface vTable

' The events are now connected

DCalendarEvents_Events_Connect(cast(any ptr ,OBjOBir Event) ‘connect object with its event
Call_Sett() initial settings if you want some
End Sub
Sub Call_OnClose() "normaly be called from close form command
' The events are now disconnected
DCalendarEvents_Events_Disconnect(cast(any ptr ,@9jOBj_Event) 'disconnect event from object
AxRelease_Object(Obj_Ptr) 'release object
'AxStop() ‘only one by project, better on the WM_close of last Form
End Sub
Sub Call_Sett() 'initial settings here
'ex put/ get /call values
‘put date
pVTI->lpvtbl->putDay(pVTI, 14) "or AX_Vt (pVTI,puDay,14)
pVTI->lpvtbl->putMonth(pVTI, 12) " or Ax_Vt (pVTI,Month(,12)
pVTI->lpvtbl->putYear(pVTI, 2014) " or Ax_Vt (pVTl,putYear(,2014)

End Sub

C. Using Native Dispatch
Must have headers:

#include Once "windows.bi"
#Include Once "Ax_Lite.bi" 'no static lib

#Include Once "mscal_Invoke.bi" ‘AxSuite generated invoke call

AxInit(True) ‘'ax global COM initialization True if Atl control , else False

"remind control form : Classname = AtIAXWin ProgIDASCAL.Calendar
' if needed use AxControlChild or AxControlTool to create the control on form

Dim Shared As any ptr Obj_Ptr ' object Ptr
Dim Shared As Dword Obj_Event 'cookie for objectrds

Dim Shared As ICalendar Obj_Disp ‘calendar dispatch object

Declare Sub Call_Sett()

' The events can be connected
Declare Function DCalendarEvents_Events_Connect(BX¥#ConnectionPointContainer Ptr,ByRef As dword) AS Dword
Declare Function DCalendarEvents_Events_Disconnect(ByVal As IConnectionPointContainer ptr, ByVal As dword) AS Long
Sub Call_Init(ByVal hWin As hwnd)' be called from initialization of the control form

Obj_Ptr = AxCreate_Object (hwin) 'get object control address

SetObj (@Obj_Disp , Obj_Ptr) 'set Cal object to Calendar address

' The events are now connected

DCalendarEvents_Events_Connect(cast(any ptr ,OhjOBjr Event) ‘connect object with its event
Call_Sett() 'initial settings if you want some

End Sub

Sub Call_OnClose() "normaly be called from close form command
' The events are now disconnected
DCalendarEvents_Events_Disconnect(cast(any ptr ,@HjOBj_Event) 'disconnect event from object
AxRelease_Object(Obj_Ptr) 'release object
'‘AxStop() ‘'only one by project, better on the WM__close of last Form

End Sub

Sub Call_Sett() 'initial settings here

'ex put/ get /call values
‘put date

axcall Obj_Disp.putDay , vptr(06)

axcall Obj_Disp.putMonth , vptr(05)

axcall Obj_Disp.putYear , vptr(1985)
End Sub

	Sans titre

